Minggu, 27 September 2015

Kumpulan Soal Matematika Untuk SMA Beserta Pembahasannya

Limit Fungsi Trigonometri

Matematikastudycenter.com-Contoh soal dan pembahasan tentang limit fungsi trigonometri materi matematika kelas 11 SMA program IPA.

Rumus berikut untuk menyelesaikan soal-soal limit trigonometri yang masih dasar-dasar.




 Soal No. 1
Tentukan hasil dari soal limit berikut

Pembahasan
Cara pertama dengan rumus yang ada diatas, sehingga langsung didapatkan



atau dengan cara kedua yang lebih panjang, memakai turunan, 3x turunkan jadi 3 dan sin 4x turunkan jadi 4 cos 4x, kemudian ganti x dengan nol



Soal No. 2
Tentukan hasil dari soal limit berikut

Pembahasan
Seperti nomor 1



Soal No. 3
Tentukan hasil dari soal limit berikut

Pembahasan
Seperti nomor 1 juga


Soal No. 4
Tentukan nilai dari:



Pembahasan
Perhatikan rumus limit berikut:



Diperoleh



Soal No. 5
Tentukan hasil dari soal limit berikut

Pembahasan
Identitas trigonometri berikut diperlukan



Setelah diubah bentuknya gunakan rumus dasar di atas


Soal No. 6
Tentukan hasil dari soal limit berikut

Pembahasan
Ubah dulu 1 − cos 4x menjadi 2 sin 2 2x.



Soal No. 7
Tentukan hasil dari soal limit berikut

Pembahasan
Ubah dulu 1 − cos 6x menjadi 2 sin 2 3x.



Soal No. 8
Tentukan hasil dari soal limit berikut
A. 1/2
B. 1/3
C. 1/6
D. 1/12
E. 1/18
(umptn 2001)

Pembahasan
Tinggal di susun ulang, didapat hasil



Soal No. 9
Nilai
A. 4
B. 2
C. −1
D. −2
E. −4
(un 2012 A13 dan D49)

Pembahasan
Jika  1 − cos 4x menjadi  2 sin 2 2x, tentunya   cos 4x − 1   menjadi   − 2 sin 2 2x, sehingga



Soal No. 10
Nilai 
A. −2
B. −1
C. 0
D. 1
E. 2
(un 2012 B76)

Pembahasan
Ubah 1 − cos 2x menjadi 2 sin 2 x


Soal No. 11
Nilai dari:



A. 2π
B. π
C. 0
D. 1/π
E. 1/

Pembahasan
Misakan:
x − 2  = y


Soal No. 12
Nilai dari:


A. 0
B. 1/2
C. √2
D. 1/2 √2
E. 1

Pembahasan
Substitusi langsung akan menghasilkan bentuk 0/0, dengan strategi pemfaktoran,
Ingat bentuk:
a2 − b2 = (a − b)(a + b)

dimana a = sin 2x dan b = cos 2x, setelah difaktorkan coret yang sama, kemudian substitusikan nilai x yang diminta:


Soal No. 13
Tentukan nilai dari

Pembahasan
Substitusi langsung menghasilkan bentuk 0/0.
Ubah cos 2x menjadi bentuk lain yaitu cos2x − sin2x kemudian faktorkan dengan mengingat bentuk
a2 − b2 = (a − b)(a + b)

Setelah itu coret dengan bagian bawah, hingga diperoleh angka − 1.

Rumus untuk cos 2x  (dalam soal ini dipakai rumus yang pertama)

Sehingga:

Soal No. 14
Nilai dari

A. 6
B. 5
C. 4
D. 2
E. 0
(UN Matematika 2014 IPA)

Pembahasan
Faktorkan x2 − 1 dengan mengingat bentuk a2 − b2 = (a − b)(a + b). Kemudian uraikan sin2 (x − 1) menjadi sin (x − 1) sin (x − 1) dan tan (2x − 2) menjadi tan 2(x − 1). Coret seperlunya.



Limit Fungsi Aljabar

Matematikastudycenter.com- Contoh soal dan pembahasan limit fungsi aljabar matematika SMA kelas 11.
Dibahas
limit x → a
lim x → ∞ termasuk juga limit x → 0

Mulai dari yang mudah dulu, tipe soal-soal limit yang bisa diselesaikan dengan substitusi langsung  seperti contoh berikut.

Soal No. 1
Tentukan hasil dari:



Pembahasan
Limit bentuk



diperoleh




Soal No. 2



Pembahasan
Limit aljabar bentuk



Substitusikan saja nilai x,


Berikutnya dilanjutkan dengan tipe metode turunan yaitu limit x menuju angka tertentu dimana jika disubstitusikan langsung mendapatkan hasil yang tak tentu.
Soal No. 3
Tentukan nilai dari   

Pembahasan
Jika angka 2 kita substitusikan ke x, maka akan diperoleh hasil 0/0 (termasuk bentuk tak tentu), sehingga selesaikan dengan metode turunan saja.


Soal No. 4
Tentukan nilai dari

Pembahasan
Masih menggunakan turunan


Soal No. 5
Nilai

A. −1/4
B. −1/2
C. 1
D. 2
E. 4
(Soal Limit Fungsi Aljabar UN 2012)

Pembahasan
Bentuk 0/0 juga, ubah bentuk akarnya ke bentuk pangkat agar lebih mudah diturunkan seperti ini


Turunkan atas - bawah, kemudian masukkan angka 3 nya


Soal No. 6
Nilai dari



A. 16
B. 8
C. 4
D. -4
E. -8
(Matematika IPS 013)

Pembahasan
Bentuk 0/0 juga, dengan turunan:


atau dengan cara pemfaktoran:

Soal No. 7
Nilai



A. − 2/9
B. −1/8
C. −2/3
D. 1
E. 2
un matematika 2007

Pembahasan
Dengan substitusi langsung akan diperoleh bentuk 0/0.
Cara Pertama
Perkalian dengan sekawan dan pemfaktoran:



Cara Kedua
dengan turunan:


Catatan
Cara menurunkan


Ubah dulu bentuk akar jadi bentuk pangkat, kl akar pangkat dua itu sama saja dengan pangkat setengah, jadinya

Turunan dari 3 adalah nol, ga usah ditulis, lanjut turunan dari

dicari pakai turunan berantai namanya, prakteknya begini:
Pangkatnya taruh depan, terus pangkatnya dikurangi satu, terus  dikali dengan turunan dari fungsi yang ada dalam kurung. x2 – 7 kalo diturunkan jadinya 2x –  0 atau 2x saja. Jadinya:


Contoh berikutnya limit x menuju tak berhingga dalam bentuk f(x)/g(x). Kesimpulan berikut digunakan pada tiga nomor berikutnya:



Soal No. 8
Tentukan nilai dari

Pembahasan
Limit x menuju ∞ dengan pangkat tertinggi yang sama, m = n



Soal No. 9
Tentukan nilai dari

Pembahasan
Limit x menuju ∞ dengan pangkat tertinggi dari pembilang lebih tinggi dari penyebutnya, m > n



Soal No. 10
Tentukan nilai dari

Pembahasan
Limit x menuju ∞ dengan pangkat tertinggi dari pembilang lebih rendah dari penyebutnya, m < n



Contoh berikutnya tipe soal limit → ∞ yang berbentuk "Selisih Akar Kuadrat".



Ini rumus yang nanti digunakan:



Kita terapkan pada soal berikut

Soal No. 11
Nilai dari adalah...

A. 3/4
B. 4/5
C. 6/5
D. 5/4
E. 4/3
(Ebtanas 1992)

Pembahasan
Limit bentuk selisih akar kuadrat dimana
a = p
dengan b = 3 dan q = −5 sehingga tengok rumus di atas



Soal No. 12
Nilai dari adalah...
A. − 39/10
B. − 9/10
C. −21/10
D. 39/10
E. ∞

Pembahasan
Langkah pertama ubah ke bentuk selisih akar seperti soal sebelumnya.



Soal No. 13
Nilai dari adalah...
A. ∞
B. 8
C. 5/4
D. 1/2
E. 0

Pembahasan
Ubah ke bentuk selisih akar seperti  ini:



Soal No. 14
Nilai dari adalah...

Pembahasan
Ubah ke bentuk selisih akar seperti soal sebelumnya.



Soal No. 15
Nilai dari

Pembahasan
Soal limit aljabar dengan bentuk selisih akar gunakan ketentuan berikut:



Limit selisih akar dengan a = c, sehingga hasilnya = 0

Soal No. 16
Nilai dari

Pembahasan
Limit selisih akar dengan a > c, sehingga hasilnya = ∞
Model berikutnya:
Soal No. 17
Nilai dari l



A. 0
B. 1/3 √3
C. √3
D. 2√3
E. ∞
un ipa sma  2013

Pembahasan
Modifikasikan hingga jika disubstitusikan tidak menjadi bentuk tak tentu, 2x jika diubah bentuk akar akan menjadi √4x2:



Substitusi x dengan ∞ ingat bilangan dibagi tak hingga hasilnya (mendekati) NOL.


Dimensi Tiga Jarak Titik ke Bidang Kubus

Matematikastudycenter.com- Contoh soal pembahasan dimensi tiga kubus tentang jarak titik ke bidang materi kelas 10 SMA.

Soal No. 1
Pada kubus ABCD.EFGH, panjang rusuk 8 cm.
Jarak titik E ke bidang BDG adalah...
A. 1/3 √3 cm
B. 2/3 √3 cm
C. 4/3 √3 cm
D. 8/3 √3 cm
E. 16/3 √3 cm
(UN Matematika 2012)

Pembahasan
Perhatikan gambar berikut.
Posisi titik E dan bidang BDG



Garis merah adalah jarak yang akan dicari, dimana garis tersebut harus tegak lurus dengan bidang BDG. Tambahkan garis-garis bantu untuk mempermudah



Perhatikan segitiga EQG yang akan digunakan sebagai acuan perhitungan.



Panjang-panjang yang diperlukan adalah
PQ = 8 cm, sama panjang dengan rusuk kubus.
EG = 8√2 cm, diagonal bidang kubus.
Mencari panjang GQ dengan phytagoras, dengan QC adalah setengah dari diagonal sisi = 4√2



Kemudian pada segitiga EPQ berlaku



ER tidak lain adalah jarak titik E ke bidang BGD.
Soal No. 2
Kubus ABCD.EFGH dengan panjang rusuk 10 cm. Titik I terletak di tengah-tengah rusuk BC. Tentukan jarak titik I ke bidang AFGD

Pembahasan
Sketsanya seperti berikut



Dari segitiga KLI diperoleh jarak titik I ke bidang AFGH, yaitu panjang dari I ke J dengan data-data yang diperlukan:
LI = 10 cm, sama dengan panjang rusuk kubus.
KI = 10 cm, sama panjangnya dengan rusuk kubus
KL = 10√2 cm, sama panjangnya dengan diagonal sisi kubus, ingat a√2



Sehingga



Soal No. 3
Kubus ABCD.EFGH dengan panjang rusuk 6 cm. Titik P adalah titik tengah EH, Q adalah titik tengan BF, R adalah titik tengah CG dan S adalah titikpotong garis ACdan BD. Tentukan jarak titik S ke bidang PQR

Pembahasan
Posisi titik P, Q, R dan S pada kubus sebagai berikut:



Acuan hitung adalah segitiga PST, tambahkan titik-titik lain jika perlu.



Tentukan panjang ST, PS dan PT dengan phytagoras, akan ditemukan bahwa ST = 3√2 cm dan PT = √45 cm



Misalkan UT = x, maka PU adalah √45 − x, dan US namakan sebagai t



Dari segitiga STU



Dari segitiga PSU



Eliminasi dan substitusikan hingga di dapat panjang t


Nilai t adalah

Karena cara cukup panjang, maka ada kemungkinan kurang teliti waktu mengerjakan, silakan dicek lagi, misalpun salah, jalan logika pengerjaan soal ini seperti di atas ya.

Tidak ada komentar: